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1. Introduction

In this paper we describe a numerical algorithm for solution of the diffusion equation in two dimensions on quadrilateral
grids, which appears to provide an excellent compromise between simplicity of realization, efficiency (in terms of the re-
quired computer time) and accuracy. Efficiency becomes a key issue if the diffusion solver is to be incorporated into a
two-dimensional (2D) or three-dimensional (3D) hydrodynamics code.

From general considerations it is clear that major improvements in efficiency for multi-dimensional schemes can be
achieved if one chooses (i) a semi-implicit rather than fully implicit approach with respect to time differencing and (ii) a
linear spatial differencing scheme. As had been proven by Kershaw [1], a linear second-order scheme on an arbitrary 2D
mesh cannot be monotone. Monotonicity can be restored with non-linear algorithms [2,3], but such algorithms entail iter-
ative solution of a large system of non-linear equations and are rather costly. Aiming at high performance efficiency, we stay
by linear approach and compare our algorithm with the best earlier published schemes from this class [4–6]. Departures
from monotonicity do not appear to be a serious issue in practical applications.

Ideally, one would prefer to use a first-order fully implicit time discretization, which is robust, unconditionally stable and
sets no additional time-step limit. However, solution of the corresponding large system of linear equations becomes a real
challenge for certain versions of spatial discretization [5], and is usually rather costly in two and three dimensions. Here, a
major simplification can be achieved by employing a symmetric semi-implicit (SSI) method proposed by Livne and Glasner
[7], which is easy to implement and quite efficient in terms of megaflops per time step. But the decisive advantage of this
method emerges when one tries to incorporate even the simplest version of the radiation transport equation into a mul-
ti-dimensional hydrodynamics code with thermal conduction [8]. From the hydrodynamics point of view, radiation transport
in the quasi-steady approximation is just an additional mechanism of non-local heat transport. As a consequence, the matrix
. All rights reserved.
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of the corresponding large linear (or non-linear) system for new temperatures under a fully implicit treatment of both the
thermal conduction and radiation transport is no longer sparse, which renders this approach almost impractical. This latter
consideration served as a principal motivation for basing our diffusion solver on the SSI method.

Strictly speaking, the algorithm described in this paper cannot be claimed as a new numerical method because it is com-
posed of known constituent parts. Also, it is not very general because it is restricted to structured quadrilateral (in two
dimensions) grids. However, to the best of our knowledge, the algorithm as a whole has neither been published nor properly
investigated before. Our results indicate that this algorithm has certain important advantages, which make it quite promis-
ing for application in multi-dimensional radiation hydrodynamics codes.

2. Basic equations

The present algorithm for solution of the diffusion equation is constructed with the primary aim to be implemented into a
2D hydrodynamical code based on a Godunov-type method, where the mass density q, the material velocity u and the mass-
specific total (internal plus kinetic) energy E ¼ eþ 1

2 u2 are the primary dependent variables. More specifically, our diffusion
solver is aimed at description of the thermal heat conduction. The general form of the hydrodynamic energy equation with
thermal diffusion is
oðqEÞ
ot
þr � ðqEþ pÞu½ � ¼ r � ðj$TÞ þ Q ; ð1Þ
where p ¼ pðq; eÞ is the pressure, T ¼ Tðq; eÞ is the temperature, e is the mass-specific internal energy, j is the heat conduc-
tion coefficient, and Q ¼ Qðt;xÞ is the volume-specific heating rate due to external energy sources.

We assume that at each Lagrangian time step, where the total energy E is advanced to a new time level t þ Dt, the con-
tributions to the energy increment from the p dV work and from thermal conduction are evaluated separately, by using the
same ‘‘old” values of the principal variables from the previous time step, and then summed up. Thus, the conduction phase of
the algorithm handles the energy redistribution among the Lagrangian cells according to the right-hand side of Eq. (1) (the
external heating Q is also treated at this phase). Because it is accomplished with fixed values of q and u, the conduction
phase must provide a solution to the diffusion equation
qcV
oT
ot
¼ r � ðj$TÞ þ Q ð2Þ
on a motionless grid – which may be rather distorted due to prior hydrodynamic steps. In Eq. (2) we actually switch over to a
new primary dependent variable T ¼ Tðt;xÞ. Because in the Godunov-type methods the primary variables q, u and E are nat-
urally assigned to cell centers, we need a numerical algorithm for Eq. (2) based on cell-centered values of the temperature T.
The mass-specific heat capacity cV at constant volume is assumed to be known and also cell-centered.

3. Grid notation

We solve Eq. (2) in two dimensions on a quadrilateral grid, which is logically rectangular. The grid is composed of a set of
nodes (vertices of quadrilaterals) xij ¼ ðxij; yijÞ; i ¼ 1;2; . . . ;nx; j ¼ 1;2; . . . ;ny, in a global orthogonal coordinate system ðx; yÞ.
The numbering convention is such that the cell ði; jÞ is a quadrilateral defined by the nodes ði; jÞ; ðiþ 1; jÞ; ði; jþ 1Þ and
ðiþ 1; jþ 1Þ; vertex ði; jÞ is always the lower-left corner of cell ði; jÞ; see Fig. 1.

We reserve two possibilities for the metric of our two-dimensional ðx; yÞ space, namely, (i) the Cartesian metric of
dV ¼ dx dy dz, and (ii) the cylindrical ðr; zÞ metric of dV ¼ rdr dz d/, where V is the three-dimensional (3D) volume. In the
cell (i,j)
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Fig. 1. Numbering of grid cells, cell vertices and faces.
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cylindrical case we can set either ðx; yÞ � ðr; zÞ or ðx; yÞ � ðz; rÞ. The three possibilities can be combined by introducing a glo-
bal cylindrical radius
R ¼ Rðx; yÞ ¼
1; Cartesian metric;
x; cylindrical metric with ðx; yÞ � ðr; zÞ;
y; cylindrical metric with ðx; yÞ � ðz; rÞ;

8><>: ð3Þ
and using the expression
Vij ¼
Z

cellði;jÞ
Rdxdy ð4Þ
for the cell volume Vij. Here, Vij is the 3D cell volume either per unit length along the z-axis in the Cartesian case, or per
radian of the azimuth angle / in the cylindrical case.

Each grid cell has four edges, which are called faces. Faces are numbered after vertices, i.e. we associate two faces
ði; j;mÞ; m ¼ 1;2, with each vertex ði; jÞ: face ði; j;1Þ connects vertex ði; jÞ with vertex ðiþ 1; jÞ, face ði; j;2Þ connects vertex
ði; jÞ with vertex ði; jþ 1Þ. Each face ði; j;mÞ has a unit normal vector nf ;ijm, which is perpendicular to face ði; j;mÞ and points
inside the cell ði; jÞ; see Fig. 1. The position of the geometric cell center is defined as
xc;ij ¼
1
4

xij þ xiþ1;j þ xi;jþ1 þ xiþ1;jþ1
� �

: ð5Þ
4. Numerical algorithm

4.1. Conservative SSI scheme

Let Tij be the cell-centered values of temperature on the above defined grid at time t, which we want to advance according
to Eq. (2) to new values eT ij at time t þ Dt. The key quantity that we use to discretize Eq. (2) is the integrated (i.e. in [erg s�1])
energy flux Hijm across the face ði; j;mÞ, defined as
Hijm ¼ �
Z

faceði;j;mÞ
ðjrT � nf ;ijmÞRdl; ð6Þ
where dl is the length element along face ði; j;mÞ. We assume that the old temperatures Tij and the old values jij (cell-cen-
tered) of the conduction coefficient are used to discretize Eq. (6) (spatial discretization; see the next paragraph). In this way
we obtain the old (not advanced) fluxes Hijm that are linear functions of old temperatures Tij. Then, an obvious (see Fig. 2)
fully conservative explicit discretization of Eq. (2) will be
cV ;ijMijsij ¼ Dt Hij1 þ Hij2 � Hi;jþ1;1 � Hiþ1;j;2 þ qijMij
� �

; ð7Þ
where
sij ¼ eT ij � Tij; ð8Þ
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Fig. 2. Explicit (old) heat fluxes Hijm across the faces of cell ði; jÞ.
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is the temperature increment in cell ði; jÞ,
Mij ¼
Z

cellði;jÞ
qRdxdy ¼ qijV ij ð9Þ
is the mass of this cell, and
qij ¼ Q ij=qij ð10Þ
is the mass-specific external heating rate.
As is well known, the fully explicit scheme (7) is unpractical because of severe stability constraints on the time step Dt [9].

An alternative fully implicit scheme, where the new fluxes ~Hijm, expressed in terms of the unknown advanced temperatureseT ij, are used on the right-hand side of Eq. (7), and which is unconditionally stable for any Dt, becomes rather complex and
computationally expensive in multiple dimensions because of necessity to solve a large system of coupled linear equations
for eT ij.

As a practical compromise, a symmetric semi-implicit (SSI) method was proposed in Ref. [7]. In this scheme the new
fluxes eHijm; eHi;jþ1;1; eHiþ1;j;2, that are to be used on the right-hand side of Eq. (7), are calculated by using only one new temper-
ature eT ij in the central cell ði; jÞ, and old temperatures in all the neighboring cells. However, one immediately realizes that in
this approach one has to deal with two different fluxes associated with each face: one eHþijm calculated from above the face
ði; j;mÞ, and the other eH�ijm calculated from below the same face ði; j;mÞ. More specifically, we have to introduce the fluxes
eHþijm ¼ Hijm � aijmsij; ð11Þ

eH�ijm ¼ Hijm þ bijm �
si;j�1; m ¼ 1;
si�1;j; m ¼ 2;

� �
; ð12Þ
where
aijm ¼ �
oHijm

oTij
; ð13Þ

bij1 ¼
oHij1

oTi;j�1
; bij2 ¼

oHij2

oTi�1;j
: ð14Þ
The coefficient aijm is the minus derivative of the explicit flux Hijm with respect to the forward (in the direction of nf ;ijm) cell
temperature, while bijm is the derivative of the same explicit flux with respect to the corresponding backward cell temper-
ature. By their physical meaning, both aijm and bijm must be non-negative. The authors of Ref. [7] present a mathematical
proof that the SSI method is unconditionally stable.

Once we get two unequal fluxes across the same face, we loose energy conservation. Energy conservation can be restored
if we calculate the amount of energy ~dij (cell-associated) lost at a given time step, and redeposit it into the same cell at the
next time step. As a result, we arrive at the following conservative SSI discretization scheme of Eq. (2)
cV ;ijMijsij ¼ Dt eHþij1 þ eHþij2 � eH�i;jþ1;1 � eH�iþ1;j;2 þ qijMij

� �
þ dij; ð15Þ
where dij is the SSI energy correction from the previous time step. Eq. (15), combined with Eqs. (11) and (12), is easily solved
with respect to sij,
sij ¼
Hij1 þ Hij2 � Hi;jþ1;1 � Hiþ1;j;2 þ qijMij
� �

Dt þ dij

cV ;ijMij þ ðaij1 þ aij2 þ bi;jþ1;1 þ biþ1;j;2ÞDt
; ð16Þ
to yield the advanced temperatures eT ij ¼ Tij þ sij.
Once sij are known, we can calculate the energy corrections ~dij for the next time step. First, we find the energy ~dijm lost at

face ði; j;mÞ,
~dijm ¼ H�ijm � Hþijm
� �

Dt ¼ aijmsijm þ bijm �
si;j�1; m ¼ 1;
si�1;j; m ¼ 2;

� �� 	
Dt: ð17Þ
Then, we split this energy into two parts: a fraction 0 6 vijm 6 1 goes into the forward-lying cell, and a fraction 1� vijm goes
into the backward-lying cell. As a result, the energy correction that must be redeposited in cell ði; jÞ at the next time step is
given by
~dij ¼ vij1
~dij1 þ vij2

~dij2 þ ð1� vi;jþ1;1Þ~di;jþ1;1 þ ð1� viþ1;j;2Þ~diþ1;j;2: ð18Þ
The split weights vijm are assumed to be proportional to the bulk heat capacities C�D;ijm of the two triangles lying on face
ði; j;mÞ and having their top vertices at the geometric centers of the forward-lying and backward-lying adjacent cells – as
it is shown in Fig. 3. More specifically,
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Fig. 3. Face-adjacent triangles used to calculate the weights for splitting the face-centered energy correction ~dijm , and the weights for the face-centered
conduction coefficient jf ;ijm .
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vijm ¼
CþD;ijm

CþD;ijm þ C�D;ijm
; ð19Þ
where
CþD;ij1 ¼
1
3

Rij þ Riþ1;j þ Rc;ij
� �

AþD;ij1 cV ;ij qij; ð20Þ

C�D;ij1 ¼
1
3

Rij þ Riþ1;j þ Rc;i;j�1
� �

A�D;ij1 cV ;i;j�1 qi;j�1; ð21Þ

CþD;ij2 ¼
1
3

Rij þ Ri;jþ1 þ Rc;ij
� �

AþD;ij2 cV ;ij qij; ð22Þ

C�D;ij2 ¼
1
3

Rij þ Ri;jþ1 þ Rc;i�1;j
� �

A�D;ij2 cV ;i�1;j qi�1;j; ð23Þ
A�D;ijm are the areas of the corresponding triangles adjacent to face ðijmÞ (see Fig. 3), Rij and Rc;ij are, respectively, the global
cylindrical radii of the vertex ði; jÞ and of the geometric center of cell ði; jÞ.

4.2. Face-centered fluxes

Now we turn to a finite-difference approximation of fluxes Hijm defined by Eq. (6). First, we denote
g ¼ rT; ð24Þ
and introduce two relevant face-associated grid vectors
lv;ijm ¼
xiþ1;j � xi;j; m ¼ 1;
xi;jþ1 � xi;j; m ¼ 2;

�
ð25Þ

lc;ijm ¼
xc;ij � xc;i;j�1; m ¼ 1;
xc;ij � xc;i�1;j; m ¼ 2:

�
ð26Þ
Vector lv ;ijm connects the two end vertices of face ði; j;mÞ, whereas vector lc;ijm connects the centers of the two cells adjacent to
face ði; j;mÞ; see Fig. 4. Then, an obvious second-order discretization of Eq. (6) will be
Hijm ¼ �jf ;ijm gf ;ijm � nf ;ijm

� �
lv;ijm


 

Rf ;ijm; ð27Þ
where
Rf ;ijm ¼
1
2 Rij þ Riþ1;j
� �

; m ¼ 1;
1
2 Rij þ Ri;jþ1
� �

; m ¼ 2;

(
ð28Þ
and jf ;ijm and gf ;ijm are, respectively, the conduction coefficient and the temperature gradient evaluated at the midpoint of
face ði; j;mÞ.

To derive a formula for gf ;ijm, we assume for a moment that j is continuous across the face ði; j;mÞ, and that we know not
only the cell-centered temperatures Tij, but also the temperatures Tv ;ij at cell vertices. Then, the two components of vector
gf ;ijm can be found from two rather obvious equations
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Fig. 4. Vector scheme for temperature gradient evaluation.
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gf ;ijm � lv;ijm ¼ DTv;ijm;

gf ;ijm � lc;ijm ¼ DTc;ijm;

(
ð29Þ
where we have denoted
DTv;ijm ¼
Tv;iþ1;j � Tv;i;j; m ¼ 1;
Tv;i;jþ1 � Tv;i;j; m ¼ 2;

�
ð30Þ

DTc;ijm ¼
Tij � Ti;j�1; m ¼ 1;
Tij � Ti�1;j; m ¼ 2:

�
ð31Þ
By solving the linear system (29) with respect to the two components of gf ;ijm and substituting the result into Eq. (27), we
obtain the final expression for Hijm,
Hijm ¼
jf ;ijmRf ;ijm

lv;ijm � lc;ijm



 

 lv ;ijm � lc;ijm
� �

DTv;ijm � jlv;ijmj2DTc;ijm

h i
: ð32Þ
Now we can relax the assumption of a continuous conduction coefficient. With j being discontinuous across a face ði; j;mÞ,
physics requires the normal component of the flux�jg to be continuous. As a result, the normal component of the gradient g
becomes discontinuous, and we have three unknown components of the vector gf ;ijm. If we write
g�f ;ijm ¼ g�?nf ;ijm þ gk
lv;ijm
jlv;ijmj

; ð33Þ
we obtain instead of Eq. (29) the following three equations
j�g�? ¼ jþgþ?;

gkjlv;ijmj ¼ DTv;ijm;

2g�?A�D;ijm þ 2gþ?AþD;ijm þ gk lv;ijm � lc;ijm
� �

¼ jlv;ijmjDTc;ijm;

8><>: ð34Þ
to calculate the three unknown components g�?, gþ?; gk of the temperature gradient gf ;ijm at face ði; j;mÞ. Here, j� are the two
values of the conduction coefficient j on two sides of face ði; j;mÞ;A�D;ijm are the areas of the two adjacent triangles shown in
Fig. 3. Once we solve the system (34) and take into account that 2ðA�D;ijm þ AþD;ijmÞ ¼ jlv ;ijm � lc;ijmj, we obtain the same expres-
sion (32) for Hijm, with jf ;ijm given by Eq. (43), i.e. by a weighted harmonic mean of the two cell-centered coefficients jij in
the two adjacent cells.

Note that in the particular case of a rectangular mesh, when we have lv ;ijm � lc;ijm ¼ 0; jlv ;ijm � lc;ijmj ¼ jlv ;ijmj � jlc;ijmj, Eq. (32)
becomes particularly simple, the values of the vertex temperatures Tv ;ij are not needed, and our algorithm reduces to the
standard second-order central five-point scheme.

4.3. Vertex temperatures

To close the finite-difference approximation of fluxes Hijm, we need an interpolation scheme for the vertex temperatures
Tv ;ij. In the logical space of grid indices ði; jÞ each vertex ði; jÞ is surrounded by four cell centers with physical coordinates
xc;ij; xc;i�1;j; xc;i;j�1 and xc;i�1;j�1, which have known values of temperatures Tij, Ti�1;j; Ti;j�1 and Ti�1;j�1; see Fig. 5. We want a
linear interpolation formula of the form
Tv;ij ¼ l1;ijTij þ l2;ijTi�1;j þ l3;ijTi�1;j�1 þ l4;ijTi;j�1; ð35Þ
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Fig. 5. Four-point stencil for evaluation of vertex temperatures Tv ;ij . The c-quadrilateral is delineated with dashes.
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which is symmetric with respect to cyclic permutations of the surrounding cell centers and second-order accurate. When
combined with the finite-difference expression (32) for the fluxes Hijm, it yields a nine-point stencil for the 2D spatial dis-
cretization of Eq. (2).

Assume for a moment that the conduction coefficient j is continuous across all the relevant cell faces and consider a
c-quadrilateral made of vertices xc;ij;xc;i�1;j; xc;i;j�1 and xc;i�1;j�1 (see Fig. 5). An effective way to construct the required
interpolation is to use a bilinear mapping of the c-quadrilateral onto a standard ðn;gÞ 2 ½�1;þ1� � ½�1;þ1� square in the
computational space [10, §11.4], which is given by
x ¼ 1
4

xc;ijð1þ nÞð1þ gÞ þ xc;i�1;jð1� nÞð1þ gÞ þ xc;i;j�1ð1þ nÞð1� gÞ þ xc;i�1;j�1ð1� nÞð1� gÞ
� �

: ð36Þ
The required temperature interpolation can then be written as
TðxÞ ¼ 1
4

Tijð1þ nÞð1þ gÞ þ Ti�1;jð1� nÞð1þ gÞ þ Ti;j�1ð1þ nÞð1� gÞ þ Ti�1;j�1ð1� nÞð1� gÞ
� �

: ð37Þ
Clearly, this interpolation possesses the desired symmetry and is linear with respect to the physical coordinates x along all
the four edges of the c-quadrilateral. More generally, if the original temperature distribution is an arbitrary linear function
TðxÞ ¼ aþ b � x, the interpolation scheme (Eqs. (36) and (37)) reconstructs this function exactly. The latter fact actually
means that our algorithm should reproduce exactly steady-state linear solutions of the diffusion equation on all types of dis-
torted grids, and that it should be of second-order when converging to non-linear steady-state solutions.

Eqs. (36) and (37) dictate the following algorithm for evaluating Tv ;ij: (i) set x ¼ xij on the left-hand side of Eq. (36) and
calculate the corresponding natural coordinates ðnv ;ij;gv ;ijÞ of vertex ði; jÞ (here one has to solve a quadratic equation), then (ii)
substitute ðnv ;ij;gv ;ijÞ for ðn;gÞ in Eq. (37) and calculate Tv ;ij. Generalization to a discontinuous conduction coefficient j is
accomplished by referring to a corresponding 1D treatment (see, for example, [10, §3.3]) along each of the four edges of
the c-quadrilateral. First of all note that the mapping (Eqs. (36) and (37)) becomes an exact 1D linear interpolation between
two neighbor cell-centered temperatures Tij whenever vertex xij lies on any of the four edges of the c-quadrilateral. It is an
elementary exercise to show that in this 1D case the correct interface (i.e. vertex) temperature, consistent with the continu-
ity of the flux jrT , is obtained after the weight coefficients for Tij in the corresponding linear interpolation are multiplied by
jij. Hence, an obvious generalization to the 2D case will be to use in Eq. (35) the interpolation coefficients la;ij;a ¼ 1;2;3;4,
defined as
la;ij ¼ ba;ij

X4

a¼1

ba;ij

 !�1

; ð38Þ

b1;ij ¼ jijð1þ nv;ijÞð1þ gv;ijÞ;
b2;ij ¼ ji�1;jð1� nv ;ijÞð1þ gv;ijÞ;
b3;ij ¼ ji�1;j�1ð1� nv;ijÞð1� gv;ijÞ;
b4;ij ¼ ji;j�1ð1þ nv ;ijÞð1� gv;ijÞ: ð39Þ
Since temperature is inherently non-negative, we would like all the coefficients la;ij in Eq. (35) to be non-negative. However,
once our grid becomes strongly distorted – i.e. we calculate either jnv ;ijj > 1 or jgv ;ijj > 1 from Eq. (36) – at least some of la;ij
become negative. Then we face a dilemma: (i) either impose an artificial constraint la;ij P 0 and loose the second-order
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convergence, or (ii) risk large numerical errors and negative temperatures with non-linear temperature profiles. Numerical
tests with non-steady non-linear problems (see Section 5.4 below) compel us to decide for option (i).

Finally, substituting Eq. (35) into Eq. (32) and differentiating with respect to the corresponding temperatures, we obtain
explicit expressions for the SSI coefficients aijm and bijm,
aijm ¼
jf ;ijmRf ;ijm

lv;ijm � lc;ijm



 

 jlv;ijmj2 þ ðlv ;ijm � lc;ijmÞ �
ðl1;ij � l2;iþ1;jÞ; m ¼ 1;
ðl1;ij � l4;i;jþ1Þ; m ¼ 2;

( )" #
; ð40Þ

bijm ¼
jf ;ijmRf ;ijm

lv;ijm � lc;ijm



 

 jlv;ijmj2 þ ðlv;ijm � lc;ijmÞ �
ðl3;iþ1;j � l4;i;jÞ; m ¼ 1;
ðl3;i;jþ1 � l2;i;jÞ; m ¼ 2;

( )" #
: ð41Þ
It may be noted here that a possible alternative to the bilinear mapping (Eqs. (36) and (37)) would be to use a least square
approximation to the linear interpolation TðxÞ ¼ aþ b � x. An obvious shortcoming of this approach is that we loose the exact
linear interpolation along the edges of the c-quadrilateral. We did not explore possible advantages of this option simply be-
cause good accuracy had already been achieved with the present method.

4.4. Face-centered conduction coefficients

Since our principal goal is to obtain a fast and economical numerical scheme, we want to avoid iterative solution of a large
non-linear system of equations for the new temperatures eT ij required in the fully non-linear approach. Consequently, we are
forced to use the old (i.e. from the previous time step) values of the conduction coefficient jij. Within this approach we con-
sider two options for interpolation between the cell-centered jij to obtain face-centered values jf ;ijm. The first is a weighted
arithmetic mean,
jfa;ijm ¼
A�D;ijm

A�D;ijm þ AþD;ijm
jij þ

AþD;ijm
A�D;ijm þ AþD;ijm

�
ji;j�1; m ¼ 1;
ji�1;j; m ¼ 2;

� �
; ð42Þ
where the weights are proportional to the areas A�D;ijm of the two triangles adjacent to face ði; j;mÞ; see Fig. 3. It is a simple
linear interpolation along the normal direction nf ;ijm.

The second option is derived from the self-consistent treatment of discontinuous j and leads to the weighted harmonic
mean
jfh;ij1 ¼
jijji;j�1 A�D;ij1þAþD;ij1

� �
jijA

�
D;ij1þji;j�1Aþ

D;ij1
¼ jijji;j�1

jfa;ij1
;

jfh;ij2 ¼
jijji�1;j A�D;ij2þAþ

D;ij2

� �
jijA

�
D;ij2þji�1;jA

þ
D;ij2
¼ jijji�1;j

jfa;ij2
;

ð43Þ
which is usually considered to be the preferred version of jf ;ijm [10, Chapter 3]. However, it is quite clear that, because we use
the old values of jij, the harmonic mean cannot be taken literally for simulating non-linear heat waves, which propagate into
a cold medium with initially zero (or close to zero) temperature and conduction coefficient. Here, again we face a dilemma of
either (i) to use the arithmetic mean (Eq. (42)) and loose the possibility to reproduce exactly piecewise linear solutions with
j jumps, or (ii) to impose an ad hoc limit on possible cell-to-face variations of the conduction coefficient, such as
jf ;ijm ¼maxfjf 0;ijm;jfh;ijmg; ð44Þ
where
jf 0;ijm ¼ djf 0 �
maxfjij;ji;j�1g; m ¼ 1;
maxfjij;ji�1;jg; m ¼ 2;

�
ð45Þ
and djf 0 � 1 is a user-defined small parameter. And again, tests with non-linear heat waves in Sections 5.4 and 5.5 compel us
to opt for (i).

4.5. Boundary conditions

We consider only the Dirichlet (specified temperature) and the Neumann (specified flux) boundary conditions that are
relevant for material (electron or molecular) thermal conduction. Probably the easiest way to set up a Dirichlet boundary
condition is to add an extra layer of virtual (‘‘ghost”) grid cells and assign the boundary temperature values Tbc;ij to their cen-
ters. Also, cell-centered boundary values of the conduction coefficient jbc;ij should be specified in this case.

For a Neumann boundary condition, corresponding boundary fluxes can be assigned directly, Hijm ¼ Hbc;ijm, at cell faces
ði; j;mÞ along the boundary. Note that in this case we still need the cell-centered boundary temperatures Tbc;ij in the ghost
cells to calculate the vertex temperatures Tv ;ij along the boundary; the latter are needed to calculate the fluxes across the
neighboring non-boundary faces ði; j;3�mÞ on non-orthogonal grids; see Eq. (32). The ghost-cell temperatures Tbc;ij are
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simply taken from the neighboring physical cells. In this way also the symmetry (reflective) boundaries are automatically
accounted for.

In addition, for all types of boundaries, we have to set bijm ¼ 0;vijm ¼ 1 at boundary faces ði; j;mÞ where the unit normal
nf ;ijm points inside the computational domain, and aijm ¼ 0;vijm ¼ 0 at boundary faces ði; j;mÞ where nf ;ijm points outside the
computational domain. Along the Neumann-type boundaries, where the fluxes Hijm are fixed by the boundary condition, we
set both aijm ¼ bijm ¼ 0.

4.6. Time step control

The SSI algorithm requires a separate control of the time step Dt to ensure convergence and accuracy of solution [7]. Be-
cause the energy correction dij in Eq. (16) is taken from the previous step and cannot be reduced in the current cycle, we need
two separate constraints on Dt with two independent control parameters e0 and e1. Similar to Ref. [7], these conditions can
be written as
Hij1 þ Hij2 � Hi;jþ1;1 � Hiþ1;j;2 þ qijMij
� �

Dt
cV ;ijMij þ ðaij1 þ aij2 þ bi;jþ1;1 þ biþ1;j;2ÞDt












 6 ðe0 � e1ÞðTij þ TsÞ; ð46Þ

~dij

cV ;ijMij












 6 e1ðTij þ TsÞ; ð47Þ
where Ts > 0 is a problem-specific ‘‘sensitivity” threshold for temperature variations. Clearly, we must always choose e1 < e0.
Condition (47) guarantees that in the next cycle the relative temperature variation due to the SSI energy correction dij will

not exceed e1 for any new value of Dt > 0. When applied together at each time step, the two conditions (46) and (47) guar-
antee that the total relative temperature variation jsijj=ðTij þ TsÞ [where sij is given by Eq. (16)] never exceeds e0. Note that, by
reducing the current time step Dt, both conditions (46) and (47) can always be satisfied for any e1 > 0 and e0 > e1.

5. Numerical tests

We explore the properties of our algorithm by running two groups of tests. The first group is a selection of standard tests
against simple steady-state analytical solutions, used in many previous publications [1,4–6]. These tests reveal the basic
properties of our algorithm with respect to spatial discretization. The second group includes three time-dependent problems,
which demonstrate the basic features of the SSI method.

All the test problems are simulated on a standard set of four different grids in a unit square ðx; yÞ 2 ½0;1� � ½0;1� that are
successively refined by decreasing the parameter
h ¼ nxny
� ��1=2

; ð48Þ
where nx and ny are, respectively, the numbers of cells along the x and y-axes. Usually we have nx ¼ ny, so that h ¼ 1=nx. The
four standard grids that we use below are shown in Fig. 6. The smooth ‘‘wavy” grid in Fig. 6(c) is constructed by applying a
diagonal shift [5]
x0ij ¼ xij þ a0 sinðxijÞ cosðyijÞ;
y0ij ¼ yij þ a0 sinðxijÞ cosðyijÞ;

ð49Þ
to a square grid of Fig. 6(a) with a0 ¼ 0:1. The random grid in Fig. 6(d) is obtained by shifting each inner vertex of the square
grid to a random position on a circle of radius 0:2h around the original vertex location [4]. Note that of these four grids only
the Kershaw grid is strongly distorted in the sense that some of the interpolation weights ð1� nv;ijÞð1� gv ;ijÞ in Eq. (37) be-
come negative.

As usual, we introduce two norms for truncation errors
dTh
m ¼max

ði;jÞ
Tij � Tc

ij




 


; dTh
L2 ¼

X
i;j

Tij � Tc
ij

� �2
Vij

" #1=2

; ð50Þ
to investigate the convergence of the numerical scheme; here Tc
ij is the value of the exact solution Tðx; yÞ at the midpoint

ðx; yÞ ¼ ðxc;ij; yc;ijÞ of cell ði; jÞ, and Vij is the volume (area) of this cell. Correspondingly, we have two values
qm ¼
log dTh1

m =dTh2
m

� �
logðh1=h2Þ

; qL2 ¼
log dTh1

L2=dTh2
L2

� �
logðh1=h2Þ

; ð51Þ
for the spatial convergence order of the scheme.
To reach numerical steady states in steady-state tests, we applied appropriate boundary conditions, a certain initial con-

dition (which typically was Tðx; yÞ ¼ 0), and ran the code until the errors ceased to change in time. It was explicitly checked
that the final results did not depend on the initial conditions, and only the number of required time steps changed.
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Fig. 6. Four standard grids on a unit square: (a) orthogonal square grid with nx ¼ ny ¼ 10; (b) Kershaw grid with nx ¼ ny ¼ 12; (c) smooth ‘‘wavy” grid,
obtained by transformation (49), with nx ¼ ny ¼ 10 and (d) random grid with nx ¼ ny ¼ 10.
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5.1. Steady-state linear solution

First of all, we test our algorithm against the linear steady-state solution
Tðx; yÞ ¼ x ð52Þ
in the unit square 0 6 x; y 6 1, obtained with the boundary conditions Tð0; yÞ ¼ 0; Tð1; yÞ ¼ 1 and oT=oy ¼ 0 along y ¼ 0 and
y ¼ 1; here the values qcV ¼ 1; j ¼ 1; Q ¼ 0 are assumed. Once the steady-state is reached, our numerical solution repro-
duces the analytical one exactly on all four grids shown in Fig. 6. In this respect, our scheme is on a par with those proposed
in Refs. [4,5], and superior to the one proposed in Ref. [6]. Note that, in order to recover the exact linear solution on the
strongly distorted Kershaw mesh, we have to allow negative values of the interpolation weights ð1� nÞð1� gÞ in Eq. (37).
When, however, these weights are constrained to be non-negative, we get finite truncation errors with the first-order con-
vergence rate.

Because we use a semi-implicit rather than fully implicit method for time discretization, the linear solution provides a
good opportunity to study the temporal convergence of our scheme. In general, the efficiency of temporal convergence de-
pends on the type of grid and the initial condition. Fig. 7 illustrates the convergence for a difficult case of the random grid
with 100� 100 cells and the initial condition Tðx; yÞ ¼ 0 at t ¼ 0. If we use a fixed value of the time step Dt (solid curves in
Fig. 7), then a rapid convergence (on a physical relaxation timescale trel 	 0:1) to the steady-state solution is achieved with
Dt 6 0:001, but no convergence is observed for Dt P 0:002. Although absence of convergence for large Dt looks more like
zero stability than instability (the errors saturate at a finite level), this example indicates that the original claim by Livne
and Glasner [7] of the SSI method being unconditionally stable might in fact be too strong and somewhat misleading for
practical applications. The conclusion is that, in the SSI method, a special care should be taken of the time step control. Note
that the convergence threshold Dt 	 2� 10�3 in the above example is still significantly larger than the stability threshold
Dt 6 h2

=ð2jÞ ¼ 5� 10�5 of the explicit scheme.
At the same time, as it is illustrated with the dotted curve in Fig. 7, the ‘‘dynamic” time-step constraints (46) and (47),

based on accuracy considerations, prove to be quite sufficient for practical needs even with moderate values of
e0 ¼ 0:2; e1 K e0=4. Although these conditions do not ensure full convergence to the steady-state solution, they suppress
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the numerical errors to a low enough level of dTm; dTL2 K 1–2� 10�3 that should be satisfactory for most practical applica-
tions. The criterion based on Eqs. (46) and (47) does not lead to full convergence because, as the temperature variations be-
come smaller and smaller, it allows larger and larger time steps, which finally surpass the convergence threshold.

5.2. Steady-state non-linear solution

Following Refs. [4–6], we take a 1D steady-state non-linear solution
Table 1
Steady-

Algorith

Ref. [5]

This wo
Tðx; yÞ ¼ aþ bxþ cx4; ð53Þ
where a, b and c are constants, to verify the convergence of our scheme with respect to spatial discretization. This solution is
obtained with the source term
Q ¼ Qðx; yÞ ¼ x2; ð54Þ
and the boundary conditions of a zero normal flux, oT=oy ¼ 0, at y ¼ 0 and 1, and of fixed temperatures,
Tð0; yÞ ¼ a; Tð1; yÞ ¼ aþ bþ c; ð55Þ
at x ¼ 0 and x ¼ 1.
Table 1 compares the convergence results for our scheme with those from Ref. [5], obtained with the values of
a ¼ 1þ 8j
6ð1þ 4jÞ ; b ¼ 1þ 8j

12jð1þ 4jÞ ; c ¼ � 1
12j

; j ¼ 1
30

ð56Þ
state non-linear solution on a random grid: comparison with the algorithm of Shashkov and Steinberg [5].

m nx ¼ ny dTm dTL2 qm qL2

10 4:34� 10�2 1:87� 10�2 2.04 2.20
20 1:05� 10�2 4:06� 10�3 1.72 1.79
40 3:18� 10�3 1:17� 10�3 – –

rk 10 4:01� 10�2 1:86� 10�2 1.67 1.96
20 1:26� 10�2 4:79� 10�3 1.92 1.97
40 3:32� 10�3 1:22� 10�3 1.97 2.02
80 8:48� 10�4 3:01� 10�4 – –



Table 2
Steady-state non-linear solution on a random grid: comparison with the algorithm of Breil and Maire [6].

Grid/algorithm nx ¼ ny dTm dTL2 qm qL2

Kershaw/Ref. [6] 6 4:29� 10�2 1:86� 10�2 1.5 1.84
18 8:17� 10�3 2:44� 10�3 1.66 1.93
36 2:60� 10�3 6:43� 10�4 – –

Kershaw/this work 6 4:84� 10�3 2:23� 10�3 1.0 1.18
18 1:62� 10�3 6:07� 10�4 1.23 1.42
36 6:90� 10�4 2:27� 10�4 1.58 1.75
72 2:30� 10�4 6:75� 10�5 – –

Wavy/Ref. [6] 10 6:17� 10�3 2:49� 10�3 1.31 1.84
20 1:90� 10�3 6:93� 10�4 1.87 1.96
40 5:19� 10�4 1:78� 10�4 – –

Wavy/this work 10 2:33� 10�3 8:06� 10�4 1.75 1.95
20 6:92� 10�4 2:09� 10�4 1.86 1.99
40 1:90� 10�4 5:26� 10�5 1.93 1.99
80 4:97� 10�5 1:32� 10�5 – –

Random/Ref. [6] 10 1:92� 10�3 6:21� 10�4 0.37 0.69
20 1:48� 10�3 3:84� 10�4 0.18 0.15
40 1:31� 10�3 3:46� 10�4 – –

Random/this work 10 1:34� 10�3 6:20� 10�4 1.67 1.95
20 4:20� 10�4 1:60� 10�4 1.92 1.98
40 1:11� 10�4 4:06� 10�5 1.97 2.02
80 2:83� 10�5 1:00� 10�5 – –
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on a random grid of Fig. 6(d). Similar to the support-operators method of Ref. [5], our scheme demonstrates a second-order
convergence rate in both norms, and nearly the same absolute values of the truncation errors.

A more detailed comparison with the recently published work of Breil and Maire [6] on three types of distorted grids is
presented in Table 2. In this case the values of
a ¼ 0; b ¼ 1þ 1
12j

; c ¼ � 1
12j

; j ¼ 1 ð57Þ
are chosen. Fig. 8 shows how the L2 error dTL2 decreases with the decreasing mesh size h on the four grids of Fig. 6. No con-
straints to ensure positiveness of la;ij in Eq. (35) have been imposed here. Clearly, for all the four grids the second-order
asymptotical convergence is observed. In this respect our scheme proves to be more efficient than that of Ref. [6], where slow
(if any) convergence was observed on the random mesh. In addition, as it is seen from Table 2, in all cases considered our
errors dTm; dTL2 are significantly lower than those in Ref. [6]. Note that in our case the random grid errors are practically
equal to those on the square grid (see Fig. 8).
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Fig. 8. The L2 numerical error dTL2 as a function of mesh size h for the non-linear problems (53)–(55), (57) on the four grids of Fig. 6.
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5.3. Steady-state solutions with discontinuous conduction coefficient

Here, we perform convergence analysis for a steady-state solution of the form [5]
Table 3
Steady-

Wavy g

Random

Table 4
Steady-

Grid/alg

Wavy/R

Wavy/t

Random

Random
Tðx; yÞ ¼
aþ bxþ cy; 0 6 x 6 0:5;
aþ b j2�j1

2j2
þ b j1

j2
xþ cy; 0:5 6 x 6 1;

(
ð58Þ
where the conduction coefficient
j ¼
j1; 0 6 x < 0:5;
j2; 0:5 < x 6 1;

�
ð59Þ
has a jump at x ¼ 0:5. For c–0 we obtain a solution with a discontinuous tangential flux, proposed in Ref. [5] as a special test
case. To numerically simulate the above solution, we applied the Dirichlet boundary condition (specified T) as dictated by Eq.
(58) along the entire perimeter of the computational domain 0 6 x; y 6 1.

As might be expected, our algorithm reproduces the present solution exactly only when a harmonic-mean formula (43) is
used for the face-centered conduction coefficient jf , and only on rectangular grids, where the natural n;g coordinates in the
bilinear interpolation (37) are proportional to the physical x; y coordinates. On distorted grids it is of the first-order conver-
gence rate. In this respect our scheme is clearly inferior to those from Refs. [4,5].

Table 3 presents the results, obtained with a ¼ c ¼ 0; b ¼ 2j2=ðj1 þ j2Þ;j1 ¼ 1;j2 ¼ 9 for a solution with continuous tan-
gential flux, whereas Table 4 shows a comparison with Ref. [6] for a solution with discontinuous tangential flux, obtained
with a ¼ b ¼ c ¼ 1;j1 ¼ 1;j2 ¼ 4. Two types of non-orthogonal grids have been tested, namely, the wavy grid (Fig. 6(c))
and the random grid (Fig. 6(d)). As proposed in Ref. [5], the coordinate line x ¼ 0:5 has been made straight on the random
grid.

Tables 3 and 4 demonstrate that, despite only a first-order convergence rate, our scheme generates rather low absolute
errors on moderately distorted grids, which makes it quite satisfactory for practical applications. The results are particularly
good for the random grid – in contrast to the algorithm of Ref. [6], for which the random grid appears to be the most difficult
case. However, our scheme becomes inferior to that from Ref. [6] on a fine wavy grid, where the algorithm of Ref. [6] dem-
onstrates an almost second-order convergence rate.
state piecewise-linear solution with discontinuous conduction coefficient.

nx ¼ ny dTm dTL2 qm qL2

rid 10 5:35� 10�3 1:55� 10�3 0.48 0.70
20 3:83� 10�3 9:55� 10�4 0.71 0.87
40 2:34� 10�3 5:22� 10�4 0.86 0.94
80 1:29� 10�3 2:72� 10�4 – –

grid 10 1:27� 10�3 2:19� 10�4 0.67 1.17
20 7:96� 10�4 9:75� 10�5 1.49 1.81
40 2:84� 10�4 2:79� 10�5 0.36 0.94
80 2:21� 10�4 1:45� 10�5 – –

state piecewise-linear solution with discontinuous tangential flux: comparison with the algorithm of Breil and Maire [6].

orithm nx ¼ ny dTm dTL2 qm qL2

ef. [6] 10 1:32� 10�2 4:06� 10�3 1.83 1.83
20 3:72� 10�3 1:14� 10�3 1.94 1.95
40 9:69� 10�4 2:96� 10�4 – –

his work 10 7:73� 10�3 1:41� 10�3 0.64 0.79
20 4:97� 10�3 8:16� 10�4 0.85 0.90
40 2:76� 10�3 4:36� 10�4 0.95 0.94
80 1:43� 10�3 2:27� 10�4 – –

/Ref. [6] 10 6:71� 10�3 2:03� 10�3 0.67 0.87
20 4:21� 10�3 1:11� 10�3 0.5 0.77
40 2:97� 10�3 6:49� 10�4 – –

/this work 10 3:85� 10�4 7:83� 10�5 1.10 1.91
20 1:79� 10�4 2:08� 10�5 0.95 1.08
40 9:28� 10�5 9:82� 10�6 0.87 1.62
80 5:06� 10�5 3:20� 10�6 – –
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5.4. Planar non-linear heat wave in warm medium

For practical applications, it is important to know how the numerical algorithm converges in time and space when strong
heat waves are simulated. Here, we use a solution proposed in the original publication [7] on the SSI method, which de-
scribes a 1D non-linear heat wave
Table 5
Numeri
have be

Grid

Random

Random
Tðt; xÞ ¼ 1þ /ðnÞ; n ¼ j�1
0 ðt � xÞ; ð60Þ
propagating with a fixed (unit) velocity in a uniform medium with the initial temperature Tð�1; xÞ ¼ 1. For qcV ¼ 1 and a
conduction coefficient of the form
j ¼ j0T4; ð61Þ
the function /ðnÞ is defined implicitly by the equation
n ¼ ln /þ 4/þ 3/2 þ 4
3

/3 þ 1
4

/4: ð62Þ
As in the previous tests, we simulate this solution in the unit square 0 6 x; y 6 1 by applying the boundary conditions of a
zero normal flux, oT=oy ¼ 0, along the y ¼ 0 and y ¼ 1 edges, and the exact values of Tðt;0Þ and Tðt;1Þ from Eq. (60) along the
x ¼ 0 and x ¼ 1 edges. For time step control we use the ‘‘dynamic” criterion (46) and (47), which contains three control
parameters e0; e1 and Ts. Once significantly below 1, the value of Ts does not affect the results; in all the runs it was fixed
at Ts ¼ 10�3. Of the remaining two, it is always e1 which limits the time step in the present problem – provided that a suf-
ficiently large value of e0 J 2e1 is chosen. The cause is a relatively high initial temperature T ¼ 1, for which the relative tem-
perature increments, that are to be constrained by e0, become automatically low once the constraint by e1 has been imposed.
Therefore, we fixed the value of e0 ¼ 0:2 and explored the range of e1 6 0:1.

In general, to obtain convergence to a non-steady exact solution, one has to reduce both the time step and the mesh size.
In our case, time convergence cannot be faster than of the first-order. If we fix the mesh size and diminish the time step, the
truncation errors saturate at a certain level. Evidently, this asymptotic level is determined by the spatial properties of the
numerical algorithm and the grid. Of the three distorted grids in Fig. 6, our spatial algorithm is most accurate for the random
grid, which is the least distorted.

The results of test runs on random grids are presented in Table 5 and Fig. 9 for the time t ¼ 0:8. First of all, these data
confirm the conclusion of Ref. [7] that for a good accuracy one has to use the values of e1 K 0:02, whereas with e1 P 0:1
the accuracy of the SSI method becomes rather poor. As it is seen from Table 5, error saturation occurs rather late, at time
step values below those typically used. Hence, to improve the accuracy of simulation on a weakly distorted grid, one should
in the first place try shorter time steps.

An important practical observation emerges after we compare the results obtained with different versions of the face-
centered conduction coefficient jf [cf. Eqs. (42) and (43)]. On random grids, the accuracy of the numerical solution improves
considerably when the weighted arithmetic mean jf is used instead of the weighted harmonic mean (recall that the latter is
the text-book prescription for discontinuous conduction coefficients). As is clearly illustrated by the insert in Fig. 9, the front
of the non-linear heat wave, calculated with the harmonic-mean jf , lags significantly behind the exact solution. Such a
behavior manifests itself even more dramatically in the test problem of the next paragraph.

The relative degree of mesh distortion increases as we change from the random grid to the wavy grid, and from the wavy
grid to the Kershaw grid (the smoothness of the grid appears to be relatively unimportant for our scheme). On the Kershaw
grid we already have vertices which ‘‘stick out” of the c-quadrilateral in Fig. 5; for such vertices we get negative interpolation
weights la;ij in Eq. (35). As it turns out, without constraining these weights to be non-negative, we cannot simulate the pres-
ent test problem within a practically reasonable number of time steps of a few thousand. Thus, on strongly distorted grids we
are compelled to sacrifice the second-order of spatial convergence for the sake of practicality and introduce an additional
restriction la;ij P 0 for the interpolation coefficients in Eq. (35). The ensuing loss of accuracy turns out to be practically insig-
nificant. The results obtained in this manner are presented in Table 6 and Fig. 10.

One sees that numerical errors on the Kershaw grid are typically significantly higher than on the random grid. To reduce
numerical errors, one should in the first place increase the spatial resolution. And no advantage is gained by using the
cal errors dTm; dTL2 and the total number of time steps Ncyc at t ¼ 0:8 for the constant-speed heat wave problem on random grids. Values in parentheses
en obtained with the harmonic-mean option for jf .

e1 dTm dTL2 Ncyc

40� 40 0.10 1:92� 10�1 ð3:07� 10�1Þ 8:26� 10�2 ð1:03� 10�1Þ 284 (278)
0.02 4:63� 10�2 ð1:64� 10�1Þ 1:70� 10�2 ð3:42� 10�2Þ 653 (625)
0.005 2:15� 10�2 ð1:27� 10�1Þ 5:55� 10�3 ð2:12� 10�2Þ 1304 (1263)

80� 80 0.10 2:04� 10�1 7:07� 10�2 588
0.02 4:26� 10�2 1:69� 10�2 1292
0.005 1:01� 10�2 4:20� 10�3 2661



Table 6
Same as Table 5 but for the Kershaw grid.

Grid e1 dTm dTL2 Ncyc

Kershaw 36� 36 0.10 3:71� 10�1 ð3:51� 10�1Þ 6:50� 10�2 ð6:03� 10�2Þ 462 (453)
0.02 4:99� 10�1 ð4:75� 10�1Þ 9:11� 10�2 ð7:51� 10�2Þ 1064 (1040)
0.005 5:50� 10�1 ð5:29� 10�1Þ 1:12� 10�1 ð9:40� 10�2Þ 2215 (2177)

Kershaw 72� 72 0.10 1:94� 10�1 4:96� 10�2 1041
0.02 2:52� 10�1 3:03� 10�2 2240
0.005 3:13� 10�1 4:28� 10�2 4638
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Fig. 9. Constant-speed heat wave in warm medium on a random grid with 40� 40 cells at time t ¼ 0:8. Diamonds and crosses: arithmetic-mean option for
jf with, respectively, e1 ¼ 0:1 and 0.01; empty circles: harmonic-mean option for jf with e1 ¼ 0:01.
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arithmetic mean jf instead of the harmonic mean: as it is seen in Fig. 10, both formulae give a relatively large and practically
the same scatter of numerical points in the vicinity of the wave front. The results for the wavy grid lie between those for the
random and the Kershaw grids. In all the test runs the SSI method allowed us to achieve acceptable error levels in about
1000–3000 time steps over the characteristic physical time scale.

5.5. Planar non-linear heat wave in a cold wall

As a show case for non-linear thermal waves, we consider a self-similar plane-parallel solution of Eq. (2) with
j ¼ j0Tn; ð63Þ
which describes a heat wave launched into an initially cold [Tð0; xÞ ¼ 0] half-space x P 0 by a fixed boundary temperature
Tðt;0Þ ¼ T0. Once we introduce dimensionless variables
s ¼ sðnÞ ¼ T
T0
; n ¼ nþ 1

2
qcV

j0Tn
0

 �1=2 xffiffi
t
p ; ð64Þ
Eq. (2) is reduced to an ordinary differential equation
d2snþ1

dn2 þ n
ds
dn
¼ 0; ð65Þ
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Fig. 10. Same as Fig. 9 but for a Kershaw grid with 36� 36 cells and e1 ¼ 0:05. Crosses: arithmetic mean jf ; empty circles: harmonic mean jf .
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which is to be solved with the boundary conditions s ¼ 1 at n ¼ 0, and s ¼ snðds=dnÞ ¼ 0 at an unknown front position
n ¼ n0; the latter must be determined in the process of solution of the boundary value problem. One can prove that at
n ¼ n0 our solution has a singularity of the form s / ðn0 � nÞ1=n. Here, we choose the value n ¼ 3, for which n0 ¼
1:23117297028.

To demonstrate the accuracy of our scheme for this problem, we performed 2D runs in the unit square 0 6 x; y 6 1 on an
orthogonal grid with 100� 100 cells, and with the parameter values of j0 ¼ T0 ¼ qcV ¼ 1. The boundary conditions
Tðt;0; yÞ ¼ 1; Tðt;1; yÞ ¼ 0, and oT=oy ¼ 0 at y ¼ 0 and y ¼ 1 were applied. Simulations were stopped at t ¼ 1, when the wave
front should arrive at x ¼ xf ;ex ¼ 2�1=2n0 ¼ 0:870571. In this problem the time step Dt is primarily limited by the values of e0

and Ts in condition (46); the value of e1 is insignificant, provided that 0:1e0 K e1 K 0:5e0. Excellent accuracy is achieved with
the values of e0 ¼ 0:2 and Ts ¼ 10�3; see Table 7.

The present problem has a difficulty of choosing an adequate definition for numerical error because of a singular behavior
of the exact solution. Here, we simply compare the computed position of the wave front xf at t ¼ 1 with the exact value
xf ;ex ¼ 2�1=2n0. The numerical value xf is reconstructed by performing a linear fit to the values of T3 in the immediate vicinity
of the front. Typical error of such reconstruction is about dxf 	 �0:0005.

The results presented in Fig. 11 and Table 7 demonstrate a dramatic difference between the arithmetic-mean and the har-
monic-mean options for the face-centered conduction coefficient jf . While excellent results are obtained with the arithmetic
mean, the harmonic mean actually fails to reproduce the vicinity of the wave front with the values djf 0 � 1 of the jump lim-
iting factor djf 0 in Eq. (45). To approach the exact solution, we have to go to the values djf 0 > 0:5, for which the use of the
Table 7
Simulation results for the non-linear planar thermal wave on a square 100� 100 grid. The computed wave front position xf is to be compared with the exact
value xf ;ex ¼ 0:870571.

e0 e1 Ts djf 0 xf Ncyc

Arithmetic mean jf

0.5 0.05 10�3 – 0:8676 1704
0.2 0.02 10�3 – 0:8702 3053
0.05 0.005 10�3 – 0:8715 11,821
0.2 0.02 10�2 – 0:8683 1892

Harmonic mean jf

0.2 0.02 10�3 0.01 0:76 ð�0:01Þ 4510
0.2 0.02 10�3 0.1 0:845 ð�0:005Þ 3424
0.2 0.02 10�3 0.5 0:866 ð�0:001Þ 3010
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Fig. 11. Non-linear planar thermal wave launched into a cold wall by a fixed boundary temperature: results of simulation on a 100� 100 square grid.
Crosses: arithmetic mean jf ; empty circles: harmonic mean jf .
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harmonic mean formula, designed specially for strong discontinuities of j, does not make much sense anyway. The insert in
Fig. 11 shows that away from the wave front our numerical solution has typical relative errors of jdT=Tj 	 ð2� 3Þ � 10�3.

5.6. Spherical non-linear heat wave from an instantaneous point energy source

Here, we simulate a spherically symmetric heat wave, propagating in a cold medium with a power-law conduction coef-
ficient (63) from an instantaneous point source. We assume that at time t ¼ 0 a finite amount of energy E0 is instantaneously
released at r ¼ 0, where r is the spherical radius. In this case the solution to Eq. (2) is fully analytical [11, Chapter X] and has
the form
Tðr; tÞ ¼ Tc 1� r2

r2
f

 !1=n

; ð66Þ
where the wave front radius is given by
rf ¼ rf ðtÞ ¼ n1
j0t
qcV

Qn
0

 � 1
3nþ2

; ð67Þ
and the central temperature is
Tc ¼ TcðtÞ ¼
nn2

1

2ð3nþ 2Þ

" #1=n

Q
2

3nþ2
0

qcV

j0t

 � 3
3nþ2

: ð68Þ
The parameter Q 0 is defined as
Q 0 ¼
E0

qcV
¼ 4p

Z 1

0
Tr2dr; ð69Þ
and the dimensionless constant
n1 ¼
3nþ 2

2n�1npn

� 	 1
3nþ2 C 5

2þ 1
n

� �
C 1þ 1

n

� �
C 3

2

� �" # n
3nþ2

ð70Þ
is obtained after we substitute Eqs. (66)–(68) into Eq. (69) and perform the integration.
For numerical simulations we select the case of n ¼ 2 with n1 ¼ 27=8p�1=2 ¼ 1:03472826, and set the parameter values

qcV ¼ j0 ¼ Q 0 ¼ 1. One half of the unit sphere is covered by a 40� 40 square grid of Fig. 6(a), with the x-axis chosen to
be the cylindrical axis, and the y-coordinate identified with the cylindrical radius. Mirror symmetry is assumed along the
y-axis. All the input energy E0 is initially deposited in one central grid cell at x ¼ y ¼ 0. Simulation is stopped at t ¼ 0:3, when
the exactly calculated front radius and central temperature reach the values
rf ¼ n1t1=8 ¼ 0:8901567; Tc ¼ 2�3=2n1t�3=8 ¼ 0:5745937: ð71Þ
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Fig. 12. Non-linear spherical heat wave in cold matter on a 40� 40 square grid at t ¼ 0:3.
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The purpose of this test was twofold: (i) to verify how our scheme maintains the symmetry of solution (spherical) on a grid
which does not possess this symmetry, and (ii) to check for possible spurious numerical effects along the axes in cylindrical
ðr; zÞ coordinates. Similar to the previous problem, the time step Dt is mainly controlled by the e0 and Ts parameters. In
Fig. 12 we display the results obtained with Ts ¼ 10�3 and e0 ¼ 0:1, for which the numerical errors saturated on the
40� 40 grid. Because of a very large (7 orders of magnitude) contrast between Ts and the initial temperature in the central
cell, this run required a relatively large number Ncyc ¼ 5558 of time steps. In Fig. 12 all the 1600 cell-centered values of Tij are
plotted versus spherical radii rc;ij ¼ ðx2

c;ij þ y2
c;ijÞ

1=2 of the corresponding cell centers. One sees that all the points lie very dense
on the exact solution, which means that the spherical symmetry of the solution is very well reproduced on a square grid.
Also, no spurious effects are observed due to highly unequal cell volumes near and away from the rotational axes y ¼ 0. Sim-
ilar to the planar-wave test, the position of the wave front is quite accurately reproduced when we use the arithmetic mean
jf (see the insert in Fig. 12); away from the front typical relative errors of jdT=Tj 	 ð2� 3Þ � 10�3 are observed.

6. Conclusion

We have demonstrated that a relatively simple and sufficiently accurate numerical algorithm for thermal diffusion in two
dimensions can be constructed on quadrilateral grids by using the semi-implicit (SSI) approach. The algorithm is based on
cell-centered temperatures and has important advantages of easy programming and computational efficiency. The proposed
scheme is fully conservative and symmetric on a nine-point local stencil. It reproduces exactly linear steady-state solutions
and is of the second-order spatial accuracy on not too strongly distorted quadrilateral grids (in the sense defined in Section
4.3). Smoothness of the grid turns out to be of little (if any) significance.

When tested against non-linear thermal waves, our algorithm manifests excellent accuracy on different types of not too
strongly distorted quadrilateral grids, provided that a weighted arithmetic mean is used for face-centered values of the con-
duction coefficient. Being not fully implicit, the algorithm requires additional time step control. Our tests confirm the con-
clusion of Ref. [7] that in practice it is sufficient to keep (i) the relative temperature increments below 10–20%, and (ii) the
relative SSI energy corrections below 1–2% in each grid cell – usual constraints dictated by the approximation accuracy con-
siderations. We conclude that our algorithm should be well suited for 2D hydrodynamic codes with cell-centered principal
variables on quadrilateral grids, and appears to be readily extendable to hexahedral grids in three dimensions.

Acknowledgments

The authors gratefully acknowledge extensive and very fruitful discussions with P.-H. Maire and G.P. Shurtz during one
day visit to UMR CELIA, CEA-CNRS-Université Bordeaux I.

References

[1] D.S. Kershaw, J. Comp. Phys. 39 (1981) 375–395.



M.M. Basko et al. / Journal of Computational Physics 228 (2009) 2175–2193 2193
[2] K. Lipnikov, M. Shashkov, D. Svyatskiy, Yu. Vassilevski, J. Comp. Phys. 227 (2007) 492–512.
[3] Guangwei Yuan and Zhiqiang Sheng, J. Comp. Phys. 227 (2008) 6288–6312.
[4] J.E. Morel, J.E. Dendy Jr., M.L. Hall, S.W. White, J. Comp. Phys. 103 (1992) 286–299.
[5] M. Shashkov, S. Steinberg, J. Comp. Phys. 129 (1996) 383–405.
[6] J. Breil, P.-H. Maire, J. Comp. Phys. 224 (2007) 785–823.
[7] E. Livne, A. Glasner, J. Comp. Phys. 58 (1985) 59.
[8] R. Ramis, J. Meyer-ter-Vehn, MULTI2D – A Computer Code for Two-dimensional Radiation Hydrodynamics, Report MPQ-174, MPQ, Garching, 1992.
[9] R.D. Richtmyer, K.W. Morton, Difference Methods for Initial Value Problems, Wiley, New York, 1967.

[10] P. Wesseling, Principles of Computational Fluid Dynamics, Springer, Berlin, Heidelberg, 2001.
[11] Ya.B. Zel’dovich, Yu.P. Raizer, Physics of Shock-waves and High-temperature Hydrodynamic Phenomena, vol. 2, Academic Press, New York, 1967.


	An efficient cell-centered diffusion scheme for quadrilateral grids
	Introduction
	Basic equations
	Grid notation
	Numerical algorithm
	Conservative SSI scheme
	Face-centered fluxes
	Vertex temperatures
	Face-centered conduction coefficients
	Boundary conditions
	Time step control

	Numerical tests
	Steady-state linear solution
	Steady-state non-linear solution
	Steady-state solutions with discontinuous conduction coefficient
	Planar non-linear heat wave in warm medium
	Planar non-linear heat wave in a cold wall
	Spherical non-linear heat wave from an instantaneous point energy source

	Conclusion
	Acknowledgments
	References


